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Abstract. NIOME is a decentralized Al subnet that enables privacy-safe genomic intelligence by
replacing real human genomes with high-fidelity synthetic genomic profiles. The subnet's initial
commodity is drug response prediction: miners submit model-based predictions of medication
efficacy or adverse-event risk as a function of genomic variation, while validators generate
synthetic challenges, compute ground truth via reference pharmacogenomic simulators, and
commit performance weights to the Bittensor blockchain. By coupling synthetic genomics with
Bittensor's incentive-driven learning dynamics, NIOME provides a scalable testbed for
pharmacogenomics research and model development without exposing identifiable patient data.
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1. Introduction

Precision medicine aims to tailor therapies to an individual's biology, yet many clinically relevant
treatment differences are mediated by genetic variation that affects drug absorption, metabolism,
transport, and target engagement. Pharmacogenomics has matured into a guideline-driven
discipline for several gene-drug pairs (for example, CYP2D6-guided opioid prescribing and
CYP2C9/VKORCI1-guided warfarin dosing), but progress remains limited by restricted access to
large, diverse genomic cohorts and the sensitivity of genome-derived data.

[5-7]

Genomic sequences are intrinsically identifying and can enable re-identification even when
shared without direct identifiers, particularly when combined with auxiliary metadata and
publicly available resources. This creates substantial privacy risk and regulatory friction for
researchers, model developers, and institutions, and it concentrates biomedical Al capabilities in
organizations that can lawfully aggregate large datasets. [8]

NIOME addresses these constraints by (i) generating synthetic genomic profiles that preserve
biologically meaningful structure without corresponding to real individuals, and (ii) embedding
model competition and evaluation inside a Bittensor subnet, where incentives are coupled to
objective performance rather than data custody. The result is a decentralized market for privacy-
safe genomic intelligence where any participant can contribute models, validation infrastructure,
or downstream applications.

2. Background and Motivation

Pharmacogenomics as a supervised prediction problem. For many medications, genetic
variants in pharmacokinetics and pharmacodynamics genes are associated with clinically
meaningful differences in response. Examples include CYP2D6 phenotypes affecting opioid
metabolism and safety, and CYP2C9/VKORCI genotypes affecting warfarin dose requirements.
In NIOME, these relationships are abstracted into a prediction task: given a genomic profile and
drug context, predict a response class (efficacy, toxicity risk, or metabolic phenotype) and
optionally a calibrated confidence distribution. [5-7]

Bittensor as an incentive layer. Bittensor is a decentralized network in which specialized
subnets produce digital commodities (for example, model outputs) and distribute rewards based
on peer-evaluated performance. Within each subnet, miners provide the commodity, validators
evaluate miner outputs using a subnet-specific incentive mechanism, and validators periodically
submit weight vectors to the chain; on-chain consensus then converts these weights into
emissions for miners and validators. This architecture allows subnet designers to define objective
tasks and scoring rules, while allowing open participation and continuous competition. [1-3]



Design objectives.

NIOME is designed around five measurable objectives:
(1) Privacy by construction: no task requires or benefits from real human genomes;

(2) Scientific validity: synthetic challenges embed known biological relationships and plausible

population variability;

(3) Generalization: incentives reward robust learning rather than memorization or caching;

(4) Open participation: any miner or validator can join and compete under transparent rules; and

(5) Composability: validated outputs accumulate into reusable datasets and model checkpoints
that can be accessed by downstream applications under explicit governance.

3. NIOME Subnet Overview

NIOME operationalizes privacy-safe pharmacogenomics as a Bittensor subnet with a recurring
challenge-response loop. Validators synthesize genomic profiles, inject biologically grounded

genotype-to-phenotype rules, and publish tasks to miners. Miners respond with predictions that

are scored by validators; validators then commit weight updates, and high-performing miners
receive greater emissions. A subset of validated outputs is appended to a continuously evolving

NIOME dataset used to train and fine-tune foundation models for genomic intelligence.

Role

Validators

Miners

Subnet owner / maintainers

Primary responsibilities

Generate synthetic genomic
challenges; compute ground
truth via a reference
simulator; score miner
responses; commit weights
on-chain; audit for exploit
behavior.

Run models that map
synthetic genomic inputs to
drug-response predictions;
optionally return calibrated
confidence estimates and
latency metadata.

Define task schemas, scoring
functions, reference
simulators, and dataset
curation policies; ship

Incentivized outputs

Accurate, reproducible
scoring; high-quality
challenge design; robust anti-
gaming checks.

High predictive performance
on held-out synthetic
distributions; good
calibration; reliable uptime
and latency.

Sustained subnet integrity and
useful commodity production.



Clients / researchers

upgrades as exploits emerge.

Query validator gateways for
model outputs (inference);
optionally stake to access
curated datasets and
checkpoints.

3.1 Learning loop architecture
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Figure 1. NIOME subnet learning and incentive architecture (adapted from NIOME White Paper
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4. Task Specification and Synthetic Data Generation

NIOME's initial task family targets drug response prediction from genomic variation.

Each challenge consists of (a) a synthetic genomic profile, (b) a drug or drug class context, and
(c) optional covariates (for example, age bucket or co-medication flags) that can be synthetically
generated when needed. Miners return a predicted response category and (optionally) calibrated

confidence.



The initial reference simulator focuses on widely used pharmacogenes such as CYP2D6,
CYP2C9, CYP3A4/3A5, TPMT, SLCO1BI1, and DPYD. Synthetic phenotypes emulate clinically
meaningful strata (for example, poor/normal/ultra-rapid metabolism, dose sensitivity classes, or
adverse-event risk tiers) grounded in public pharmacogenomics knowledge bases and guidelines
[5-7]

4.1 Synthetic genomic profile representation

NIOME represents each synthetic genome as a structured feature object rather than a raw
sequence. This keeps tasks efficient while preserving genotype-to-phenotype logic. A minimal
schema includes: (i) variant indicators for a pharmacogene panel, (ii) derived star-allele or
activity-score features when relevant, (iii) optional covariates (synthetic ancestry cluster, age
bucket), and (iv) drug context metadata. The schema is versioned so that miners can adapt models
as the generator evolves.

4.2 Validator-side synthetic generation pipeline

Validators generate challenges using a reproducible pipeline controlled by validator-chosen
random seeds:

e Sample a base genotype/haplotype configuration for each locus from a parameterized
population model.

e Apply correlated variant operators (e.g., haplotype blocks, copy-number events) for loci
where independence assumptions break.

e Map the resulting genotype features to a response label using a reference simulator that
encodes public pharmacogenomic knowledge.

o Inject bounded stochasticity (label noise, covariate variation) and rotate drug contexts to
approximate real-world heterogeneity.

e Commit task seeds (or hashes) for auditability and regenerate on demand for dispute
resolution.

5. Incentive Mechanism and Scoring

Scoring and incentives. NIOME ties rewards to model quality, not to data access.

Validators compute miner scores from prediction correctness, calibration, and reliability metrics,
then convert these scores into on-chain weights. Bittensor's consensus mechanism aggregates
validator weights, and emissions are distributed proportionally to the resulting consensus scores.
[2-3]

For a batch of K challenges, miner i returns a probability vector p_hat[i,k] over response classes
(and optionally a latency 1[i,k]). Validators compute a per-sample loss (e.g., cross-entropy) and
define a batch score such as:



score_i=1-(1/K) * X k CE(y_k, p_hat[i,k]) - A * (I/K) * £ _k penalty(I[i,k])

Scores are tracked with exponential moving averages to stabilize weight updates across Bittensor
tempos.

5.1 Weight setting and on-chain consensus

Each validator periodically converts miner scores into a weight vector and submits it to the chain.
On-chain consensus aggregates the latest validator weight matrices and allocates subnet
emissions accordingly. NIOME follows standard Bittensor practice: the subnet defines the
scoring model, validators apply it and commit weights, and the protocol penalizes validators that
diverge from consensus without justification. [2-3]

5.2 Multiple incentive mechanisms

NIOME can optionally run multiple incentive mechanisms in parallel (for example, one
mechanism for predictive accuracy and another for probability calibration). This allows emissions
to be allocated across complementary objectives without collapsing them into a single scalar
metric. [2]

6. Integrity and Anti-Gaming

Model integrity and anti-gaming design. In any open incentive system, miners will optimize
the scoring function. NIOME therefore treats exploit resistance as a first-class requirement and
incorporates multiple safeguards that specifically target memorization, collusion, and shortcut
behavior.

e Continuous synthetic data variation and validator-controlled randomness to prevent
precomputation and caching.

e Mutation and perturbation operators that preserve biological meaning while breaking simple
lookup-table strategies.

e Dynamic task distributions (drug rotation, population shifts, rare-variant bursts) to stress-test
generalization.

e Confidence and calibration checks that penalize overconfident wrong answers and reward
well-calibrated uncertainty.

e Consensus-weighted validation: validators compare outcomes across independently generated
challenge streams.

e Adaptive baseline models and canary tasks to detect regressions, copying, or overfitting to a
particular validator.



7. Data Flywheel and Model Access

Data flywheel and foundation models. A distinguishing feature of NIOME is that validation
produces reusable artifacts. A fraction of scored miner outputs is appended to a curated NIOME
dataset along with provenance metadata (generator parameters, task seed commitments, and
scoring summaries). Over time, this dataset supports training and fine-tuning of NIOME
foundation models that can be exposed through validator gateways ("Access via Alpha"),
enabling downstream applications to benefit from the subnet's collective learning dynamics.

To align incentives for curation and to mitigate abuse, access to certain dataset tiers or model
checkpoints can be gated via staking, rate limits, and transparent licensing policies.

The goal is to create a sustainable research commons: open competition for model quality,
coupled with governed access to higher-value aggregates.

8. Ethics, Privacy, and Governance

Ethical, privacy, and regulatory posture. NIOME is explicitly designed to avoid processing
real human genomic data. All genomes presented to miners are synthetic artifacts generated from
configurable simulators and do not correspond to identifiable individuals. This privacy-by-
construction approach reduces the need for handling sensitive datasets and lowers barriers for
open experimentation, while still enabling meaningful benchmarking of learning systems on
biologically structured tasks.

NIOME is not a clinical decision support system and should not be used for patient care.
The subnet is intended for research, benchmarking, and method development in a privacy-safe
environment. [8-9]

Governance is primarily expressed through transparent code and versioned task definitions.
Subnet upgrades should be proposed with changelogs that describe changes to the generator,
scoring rules, and any dataset curation policies. To preserve comparability across versions,
NIOME maintains reference benchmarks and publishes migration guides so miners can adapt
without ambiguity.

9. Roadmap

e Expand the pharmacogene and drug library, including multi-gene and gene-drug-drug
interactions.

e Add richer label spaces (continuous dose response, time-to-event toxicity simulation) and
multi-task learning objectives.

e Deploy privacy audits for any generator calibration data (membership inference and
overfitting detection) and publish generator risk reports.



o Integrate external public resources through reproducible mapping layers and encourage
community-validated simulator modules.

e Explore compatibility with evolving Bittensor emission allocation mechanisms (e.g., market-
driven subnet valuation models).

10. Conclusion

NIOME reframes pharmacogenomics model development as an open, incentive-aligned learning
market. By combining synthetic genomic challenges with Bittensor's subnet architecture, NIOME
enables broad participation in genomic intelligence research without requiring access to sensitive
patient genomes. The subnet provides a practical environment to test learning algorithms,
evaluation designs, and mechanism defenses, and it offers a path toward reusable datasets and
foundation models that can accelerate responsible biomedical innovation.
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